数学乐园
首页> 学科新知>数学乐园

为什么1不是素数

    全体自然数可以分为三类:
    (1)只能被“1”和它本身整除的数叫素数,如:2、3、5、7、11……。
    (2)除了“1”和它本身以外,还能被其他数整除的数叫合数,如:4、6、8、9……。
    (3)“1”既不是素数也不是合数。
    有人要问,“1”也只能被1和它本身整除,为什么不能算素数呢?而且“1”算作素数后,全体自然数分成素数和合数两类,岂不是更简单吗?
    这要从分解素因数谈起。比如,1001能被哪些数整除,其实质是将1001分解素因数,由1001=7×11×13,而且只有这一种分解结果,知道1001除了被1和它本身整除以外,还能被7、11、13整除。若把“1”也算作素数,那么1001分解素因数就会出现下面一些结果:
    1001=7×11×13
    1001=1×7×11×13
    1001=1×1×7×11×13
    ……
    也就是说,分解式中可随便添上几个因数“1”。这样做,一方面对求 1001的因数毫无必要,另一方面分解素因素结果不唯一,又增添了不必要的麻烦。因此“1”不算作素数。

查看评论(0)

请输入评论内容!

推荐阅读